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Abstract: The diffusion-like behaviour of contaminant dispersion that underlies the commonly used
advection-dispersion equation (ADE), has been previously shown to follow rigorously from a model that uses
stochastic displacements to represent poreus flow in a homogenous medium, This paper extends the model, as
in a realistic aquiter the velocity will vary due o flow geometry and inhomogeneity of the medium. An
integral formulation of the solute mass conservation law involving the probability distribution of fluid
elements 1s presented. This is first applicd to several numerical examples involving transmission of a gaussian
contaminant plume through discrele velocity steps. A net increase in dispersion is found even when the
average velocity is maintained. This is the result of the interaction of kinematic effects and dispersion. Some
results from an analytical calculation are alse presented, which show that the effects of a velocity step decay
away {rom the step location. This leads to an expression for a sealing length, and the conclusion that
dispersion is only sensitive o velocity fluctuations on a similar length scale as that of the dispersion itself.
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1. INTRODUCTION heterogeneity and large-scale nonuniformity, For
example, a numerical simulation by Ruan [1997]
studying  transport  in a nested  Lwo-scale
corductvity field showed significant effects of the
large scale vaniation, on dispersion due to the small

The advection-dispersion equation (ADE) |Felter,
F993T that is widely used to model the dispersion
of solutes in fluid flow through porous media, is
based on splitting the carrier {luid velocity into

} . o . scale heterogeneity.
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pleusibility arguments, a Fickian assumption is With the purpose of improving understanding of
made to represent solute transport as a result of the such  phenomena, we  study a modsl  where
fluctuations. This leads to a diffusion-fike transport stochasticity is introduced at the fundamental level
equation but with the diffusion constant replaced of the path that a fluid element {ollows through a
by a medium-dependent dispersion constant /. It porous mediem, rather than stochastic variations of
is well known thal D, as measured e.g. from real medium properties as done in most of the literature
world aquifers, turns out to be scale dependent. referred to.

Studies by many authors suggest that this is due {0 Hence we describe the stochastic path followed by
inhomogenelty of the hydraulic conductivity and a single fluid clement through the porous medium,
other properties of real porous media. An up to by the equation:

date review of work in this field has been done by
Li and McLaughlin {2001], and identifies as a
major issue the lact that the mean flow in field
scale aquifers is not uniform. For example, Adams
and Gelhar [1992] found that at the Columbus site,
the groundwater flow accelerates due to a 2-order
increase iy mean conductivity, A large body of
work by Mclaughlin, Li and other authors has
studied  the  interplay  between  small-scale

v =w(xXydr+ ydBix,t,8) 0

Here u(x) is the macroscopic carrier {Tuid velocity,
as derived from an appropriate flow equation such
as Darey's law, and will in general depend on the
hydraulic head differential as well as medium
properties such as hydraulic conductivisy  and
porosity.  The second term represents the pore-
scale {microscopie) stochastic perturbation of the
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B(x.10) is a Wiener process with 8
labelling  individual realisations and 7 15 an
amplitude that regulates the extent w which the
path is maodilied. Only  {-dimensional tlow s
modelied at this stage.

Huid velocity:

Eguation (1) is o stochastic ditferential equation
(SDE) and needs 0 be solved by using [o caleulus
and other methods from SDE theory as set out, for
example, by @ksendal [1998].  Each individual
realisation of the solution represents a possible

path of a fluid element through the porous
structure, and macroscopic dispersion is described

hy calculating statistics over all realisations.

Using these methods, we have

paper |[Verwoerd and  Kulasiri,

shown 0 a previous
{0991 that an

expression can be derived for the time evolution of

the probabitity  distribution of  flueid  element
positions. Meglecting microdiffusion, this can be
used o caleulate the evolution of an initial sclute
copcentration. Morcover, we showed that for a
constant velocity w , this evolution reduces to the
same  diffasion-tike behaviour (with the variance
of the concentration growing proportional o time)
that solution of the ADE also produces. This result
establishes the equivalence of the stochastic model
to the more conventional ADE description in the
case  of a homogeneous medium, where the
assumption of a constant fluid velocity is plausibie.

The farge scale variation of the mean velocity in

real  aquifers, raises the question whether a

downwards
net

upwards  and velocity
fluctuation  produces  a the
dispersion compared (o flow at the same average
velocity. Section 4 presents analytical calculatons

steps, 4

increase  of

1o investigate this  further and  establishes  a
maximum  length  scale  for  fluctuations  that
significantdy affect dispersion. The final section

summarises conclusions and purs them in a wider
context,

2. MATHEMATICAL FORMULATION

solute concentration
at a later

Assurmming o given  initial
Cix,t,), we calculate the concentration
thme t as

[ F I oo
Cix, 1) J dx O 1 ulx )Pm (X 1x1)

w(x) 4=

(2}

Here Pof{x'lue) is the probabifity density wort x,
that # fluid element which is found at the position x
at time f. originated from position x' at the earlier
time ¢ <z In the absence of stochastic perturbations
of the path {i.e. detenministic flow), and neglecting
mluodlffu&l(m the probability distribution is a
Dirac delta function given for the simple case of
flow at a constant speed u, by
(3)

Pt =8 ~x+u,(i—1)

changing velocity in the SDE would modify the
evolution of solute dispersion away from a simple
dilfusion-like behaviour, and if so whether this
modification can - explain the - observed scale
dependence of dispersivity.

o Lodully
study of solutions of equation (1) for variable u.
and this will be presented elsewhere. In this paper,
however, a lar simpler approach is presented. The
siaplest possible way to approximate a variable 1
is as a piccewise constant veloeity, where all the

variation s contained in isolated discrete velocity
steps separating regions of constant u. The only
aspect that needs to be explicitly included in
exiending owr constant velocily modet [Verwoerd
and Kulasirs, 19991, is that the law of solute mass
conservation is formulated in terms of a probability
integral rather than a differential equation. This is
discussed in detail below,

AW

Afler formulating the method in section 2, numeric
results are presented in section 3 to Hlustrate the
cffects ol velocity steps on an assumed  initial
soiute concentration profile. These show that single
sieps produce both kinematic and dispersal effects:

ajthough there iy parnal cancellation between

this. guestion. reguires. elaborate. ...

402

Substituting this into (2} clearly reduces it to a
statement of solute mass conservation; equation {2)
is merely the generalisation of the conservation law

to stochastic flow and variable flow velocity.

The expression for the probability density derived

from SDE theory for constant fow
[Verwoerd and Kulagiri, 19997, is
P L=
(x—x =1 (t—1
- = EXP| —= - o .
2ry it ~1) 2y (fﬁf)

{4)

The integral in (2) becomes particularly simple to
do if we choose a Gaussian form for the initial
concentration, and take t; = (-

Cla,h= expl ==

2T

It is easily seen by completion of squares in the
exponent that {2).(4) and (5} gives

Spaed



Clx,p)= wL_exp _ (,.\-7_;,,0;)1—
27(s” +}/31‘) 205" +y 1)
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This shows that a gaussian iput concentration
peak propagates at the constant flow velocity,
maintamning jts gaussian peak shape, but spreads
and has a variance increasing linearly with time.
This is a well known solution of the ADE equation.
allowing identification {apart from scale factors,
Verwoerd and Kulasiri, 19967 of the macroscopic
dispersion  constant D with the microscopic
stochastic amplitude ¥

In the case of a flow velocity that is plecewise
constanl in a number of adjoining regions, (4}
applies 1n cach of these separately by taking an
appropriate value for # in each region. For
simplicity, we assume that ¢ remains positive
throughout. Let u, indicate the flow velocity in
region f, defined by its entrance boundary x,.; and
exit houndary v,

To describe the transmission of a peak from ane

region o the next, we need to formulate the
solution of a boundary value problem, rather than
the initial value problem discussed so far. The
underlying notion is that transmission of a peak
from region [ to region J+/, delivers solute
concentration af the boundary x; as a time profile
Clxt); and this is equivalent (inside region i+7 ) to

the fower integration limit of equation (7). This
necessitates the introduction of a tme cutoft, 1.
The effect of these difficulties is iilustrated by
noting that (7), applied to the trivial case when i, =
i, does not reduce Lo transmission thorough the
non-existent step according to (6}, as it shouid. To
rectify the matter, we introduce a modifying factor
gix O x ) by which a desired
profile in the flow, needs to be multiplied in order
to find the required injection profite. Tt turns out
that 1t 15 possible to solve for this function, in the
case of a gaussian peak propagating through a step,
by requiring conformation to equation (6) for the
case of a non-existent step; the result is

concentration

g(  x ) =
f—t e

1=t

X —ul

’ : s + b s
xX—x +u(z‘—~f)j X=X Au{t—1)
(%)

Incorporating these modifications into (7), the final
expression for the concentration in region i+/,
given a gaussian peak in region 4, is:

I

injecting the same time profile from an external

source at x = x; . It seems straightforward to modify

(2) appropriately:
i{x, )

C, (x.0) [ dr .9, ()

{7}

where the time-dependent probability density used
in the boundary value problem is obtained from the
spatial  density in  {(2) by an appropriate
transformation of variables. Equation (7} is indeed
equivaicnt to (2) ag a formulation of solute mass
conservation in the case of deterministic flow, as
may be confirmed by use of the appropriate 8-
lunction expression for P.

However, in the stochastic case, the situation is
more subtle. The time profile of an external source
injecting solute at position x; .is not the same any
more as the time profile in the flow at position x;.
This is because there is a finite probability of
solute dispersing upstream from the injection point

as  well as  downstream. There is  also a
mathematical  difficelty  in extrapolating  the

injection profife backwards in time, as required by
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3. MNUMERICAL EXAMPLES

Before discussing analytic approximations of the
rather formidable ntegral in {9), we present some
numerical examples, for velocity step parameters
chosen arbitrarily to illustrate its implications. The
first example is for an upwards velocity siep, and is
shown in Figure |,

The input concentration peak penetrates the 50%
velocity step shown in Figure 1(a). from region |
on the left. The concentration in region 2,
calcuiated for a suitably chosen later time, is
shown in Figures (b) and (¢) as thick lines.

Figure 1(b) compares this to the peak that would

resull from transmission at a constant fluid velocity
equal to the average over the period. shown as a



thin line “background™ peak. The velocity step
induces some asymmetry and moreover produces
additional dispersion. Part of this s merely a
kinematic stretching of the peak, dictated by solute
mass conservation, and is induced by the prefactor
{wfu,) in (). This would be present alse for
purely  deterministic  (“plug  flow™) (ransport
through a slep and is reversible by a subsequent
downwards step.

To gauge the extent of this kinematic effect, Figure
i{c) compares the step transmission peak, to the
hackground peak on which kinematic stretching
has been artificially superimposed. It is seen that
the actual dispersion is less than expeclted from
Kinematics.

{a)

[f this is correct, a downwards velocily step should
kinematically compress a contaminant peak and
hence enhance disperston. That is indeed what is
ohserved when the calculation 1 repeated for that
case.

When an upwards step is followed by a downwards
one of the same magnitude, the kinematic effects
must cancel to satisfy the conservation law. Hence
the double step can be used to show irreversible
clfects of step changes of the velocity on
dispersion, That is demonstrated by the results
shown in Figure 2.

()
1!

th)

Figure 1. Spatial concentration profile after
8 i
penetrating an upwards velocily step.

The interpretation of this is that because of
kinematic stretching, concentration gradients are
reduced in region 2 and since stochastic disparsion
is effectively driven by concentration gradients,
dispersion is suppressed by the upwards step.

_concentralion . in. comparison. to_a thin fine that
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Figore 2. Spatial concentration profile after
penetrating a double velocity step.

As in Figure (b}, Figure 2(b) shows the calculated

represents  the peak propagation al the same
constant average velocity. The net effect of the
pair of steps is to produce fess dispersion, because
during the time spent in the intermediate region 2,
the peak kinematically  stretched and
dispersion was reduced .

Wwas

Our ftnal example applies the same procedure o a
velocity fluctuation, represented by a sequence of
three velocity steps. The step sizes and positions
are chosen in such a way that the average velocity
is exactly equal to the constant velocity value in
regions | and 4. This allows a direct comparison
between a comaminant peak propagated at a
constant  velocity, and  one  that  arrives
simultaneously at the same position after having
been subject to a velocity fluctuation. This
example corresponds most direetly o the effects of
neglecting inhomogeneities in real porous media,
The result is presented in Figure 3,



The main interest of this example, is whether the
enhancement ol dispersion when the speed Is
lowered inilially on  entering region 2, s
compensated by the suppression of dispersion
caused by the velocity increase when region 3 is
entered, The comparison with the background peak
shown as o thin ling in Figure 3(b), shows that it is
not the case. There is a small but noticeable net
increase in dispersion caused by the velocity
fluctuation. This calculaton was repeated for the
case were the high speed region is encountered
first. and shows an identical overall increase in
dispersion. A plausible explanation of the fact that
the enhancement of dispersion in the low speed
region dominates, is that more Ume is spent
traversing this region than the high speed region.

of a gaussian input peak undergoing a velocity
change from V, to Vo are as follows:

= The functional form of the conlaminant
peak afler step penetration. consists of a
caussian factor multiplied by a slowly
varying modulation factor.

s The peak of the gavssian still ranslates at
the constant speed ¥V

e The time dependence of the vartance of
the CGaussian is modified. The diffusion-
like I‘acllm' yoir—1.jas in (6) 13

4

multiplied by a factor 571y = 1/ a{f)

s The time dependence of a is given 0 a

(a) good approximation by the expression
u o oy
- & -ty
alty=l+c—-—*+d e
(=1 (t—1 Wi—6)
(1M
b Here 9] = x, 7V, is the time taken for the peak to
b reach the step at x =1, and ¢ and d arc time
C independent coefficients proportional respectively
to A and Az, where A is a measure of the relative
size of the step given by A = (Vo-V, A Vo+ V).
/ \ {a)
R
o
1
RN 0.8
bre 0.8
. . o 0.4
.. Figure 3. Spatial concentration profileafier | o o1
penetrating a 3-step velocity Huctuation. '
Ai[hough[hc GlA[i.)E:i lf_)r a single ﬂuctu%ltson may be 10 20 30 40
smatl, it 15 additive for a sequence of fluctuations
as may reasonably be expected in a real aquifer. (b)
This  will result  in  additional dispersion B
proportional to the clapsed time, compared to
iransport in o homogeneous medium with the same 1.4
average fow velocity. 1 12 {\H
By iwself, this effect represents an increase of the 0.8
dispersivity, but does not cxplain a scale dependent g. g
D. To investigate thai, a more quantifative 8 "3
understanding of how step parameters determine : -
L

the additional dispersion is required.
4, ANALYTICAL RESULTS

A full description of the approximations and
procedures used (o solve the integral in (9)

analytically, is beyond the scope of the preseat
paper. Some sahient points arising from the analysis

10 20 340 40

Figure 4. Tine development of the factor that
multiplies diffusive dispersion, after penetration of
{a) an upwards, and (b} a downwards velocity step.



The time dependence of the multiplicative factor in
the standard deviation, is Hustrated in Figure 4 for
the cases of a 30% upwards and downwards
veleocity step respectively. Shown as thin lines in
these figures, are the values corresponding to a
diffusive model {1.e., =1} and the kinematic values
1.5 and 0.5 respectively.

Shortly after reaching the step at &, = &, the spatial
extension of the peak (as measured by its standard
deviation) approaches the kinematic value; after
that it decays asymptotically to the diffusive value,
The sharp drop to zere at the initial time &, in both
figures. is related to the discontinuity in the
velocity at the step, A meaningful interpretation of
thie peak as quasi-gaussian can at any rate only be
given once it has fully penetrated the step, which in
the figures happens at a time value of about 10,

Of most interest 15 the nterpretation of the decay
from the kinematic to diffusive values. In the case
of the upwards step, the initial kinematic
compression  produces  larger  concentration
gradients than in a constant velocity, diffusive
peak: consequently, it disperses faster until it has
eventually reached the same extension as the
ditfusive  peak. The opposite holds for a
downwards velocity step.

This result implies that the effects ol a single
velocity step on dispersion, remains significant
only over a limited leagth scale. Manipulation of
(10) leads us to conclude that for & to approach

5. CONCLUSIONS

Tracing the evolution of a gaussian selute peak as
it is transmitled across velocity steps. leads to
several insights.

The primary effect that we find is a reversible,
kinematic stretching or compression of the peak. In
turn, this changes the concentration gradient and
hence dispersion s suppressed hy a velocity
increase and enhanced by a decrease. This resulis
i a residupi effect on dispersion even if the
kinernatic change is reversed by a second velocity
step. Finally, in the case of a fluctuation, the
opposite effects on dispersion cancel only partly
leaving a nei increase of dispersion compared Lo
ransmisston at the same average velocity.

The effects of the velocity change decays away
from a step, intreducing 2 maximum length scale of
fluctuations to alfect dispersion. The scaling is
refative to the variance of the gaussian peak as it
gnters the [luctuation, suggesting a mechanism for
dispersivity to increase with length of travel as is
experimentally observed.

The feature of most general significance, is that a
varying velocity causes dispersion (¢ assume a time
dependence that is different from the linear one
characterising the diffusive model of the ADE.
fgnoring the non-linearity, inevitably feads to a

time- and  hence scale-dependent dispersivity.
Instead, a model usiog a realistic non-finear

dependence should stll be able to be formulated in

unibyowithin atolerance.-g-the prxriﬁ] riie;’alqr'nmmnr
Y ; z 5 .

from the step has to exceed L where

Al 2
o

{1

CHere o is the varance of the gaussian peak asit

reaches the step at x = xp.

The tmplication of this {actor in (1) 15 that a
sequence of steps, such as in the fluctuation
discussed above, witl have the most noticeable
effect on dispersion if their spacing is of the same
order as the width of the peak. Conversely, velocity
fluctuations over a length scale much larger than
that of the contaminant variation, will have a
neghigible effect on its dispersion.

In turn, this soggests that scale dependent
dispersivity can result from the fact that as a
contaminant plume moves through the medium, its
dispersion is initially only enhanced by small scale
velocity fluctuations. but as it spreads, increasingly
farger scale fluctuations ajso contribute. Further
mvestigation i3 required to establish if this will
account  guantitatively for the observed scale
dependence.
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ETTIS Of CORStants that depend o porous Hed Ui
properties only.
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